Database Functions¶
The classes documented below provide a way for users to use functions provided by the underlying database as annotations, aggregations, or filters in GingerDJ. Functions are also expressions, so they can be used and combined with other expressions like aggregate functions.
We’ll be using the following model in examples of each function:
class Author(models.Model):
name = models.CharField(max_length=50)
age = models.PositiveIntegerField(null=True, blank=True)
alias = models.CharField(max_length=50, null=True, blank=True)
goes_by = models.CharField(max_length=50, null=True, blank=True)
We don’t usually recommend allowing null=True
for CharField
since this
allows the field to have two “empty values”, but it’s important for the
Coalesce
example below.
Comparison and conversion functions¶
Cast
¶
- class Cast(expression, output_field)¶
Forces the result type of expression
to be the one from output_field
.
Usage example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Cast
>>> Author.objects.create(age=25, name="Margaret Smith")
>>> author = Author.objects.annotate(
... age_as_float=Cast("age", output_field=FloatField()),
... ).get()
>>> print(author.age_as_float)
25.0
Coalesce
¶
- class Coalesce(*expressions, **extra)¶
Accepts a list of at least two field names or expressions and returns the first non-null value (note that an empty string is not considered a null value). Each argument must be of a similar type, so mixing text and numbers will result in a database error.
Usage examples:
>>> # Get a screen name from least to most public
>>> from gingerdj.db.models import Sum
>>> from gingerdj.db.models.functions import Coalesce
>>> Author.objects.create(name="Margaret Smith", goes_by="Maggie")
>>> author = Author.objects.annotate(screen_name=Coalesce("alias", "goes_by", "name")).get()
>>> print(author.screen_name)
Maggie
>>> # Prevent an aggregate Sum() from returning None
>>> # The aggregate default argument uses Coalesce() under the hood.
>>> aggregated = Author.objects.aggregate(
... combined_age=Sum("age"),
... combined_age_default=Sum("age", default=0),
... combined_age_coalesce=Coalesce(Sum("age"), 0),
... )
>>> print(aggregated["combined_age"])
None
>>> print(aggregated["combined_age_default"])
0
>>> print(aggregated["combined_age_coalesce"])
0
Warning
A Python value passed to Coalesce
on MySQL may be converted to an
incorrect type unless explicitly cast to the correct database type:
>>> from gingerdj.db.models import DateTimeField
>>> from gingerdj.db.models.functions import Cast, Coalesce
>>> from gingerdj.utils import timezone
>>> now = timezone.now()
>>> Coalesce("updated", Cast(now, DateTimeField()))
Collate
¶
- class Collate(expression, collation)¶
Takes an expression and a collation name to query against.
For example, to filter case-insensitively in SQLite:
>>> Author.objects.filter(name=Collate(Value("john"), "nocase"))
<QuerySet [<Author: John>, <Author: john>]>
It can also be used when ordering, for example with PostgreSQL:
>>> Author.objects.order_by(Collate("name", "et-x-icu"))
<QuerySet [<Author: Ursula>, <Author: Veronika>, <Author: Ülle>]>
Greatest
¶
- class Greatest(*expressions, **extra)¶
Accepts a list of at least two field names or expressions and returns the greatest value. Each argument must be of a similar type, so mixing text and numbers will result in a database error.
Usage example:
class Blog(models.Model):
body = models.TextField()
modified = models.DateTimeField(auto_now=True)
class Comment(models.Model):
body = models.TextField()
modified = models.DateTimeField(auto_now=True)
blog = models.ForeignKey(Blog, on_delete=models.CASCADE)
>>> from gingerdj.db.models.functions import Greatest
>>> blog = Blog.objects.create(body="Greatest is the best.")
>>> comment = Comment.objects.create(body="No, Least is better.", blog=blog)
>>> comments = Comment.objects.annotate(last_updated=Greatest("modified", "blog__modified"))
>>> annotated_comment = comments.get()
annotated_comment.last_updated
will be the most recent of blog.modified
and comment.modified
.
Warning
The behavior of Greatest
when one or more expression may be null
varies between databases:
PostgreSQL:
Greatest
will return the largest non-null expression, ornull
if all expressions arenull
.SQLite, Oracle, and MySQL: If any expression is
null
,Greatest
will returnnull
.
The PostgreSQL behavior can be emulated using Coalesce
if you know
a sensible minimum value to provide as a default.
JSONObject
¶
- class JSONObject(**fields)¶
Takes a list of key-value pairs and returns a JSON object containing those pairs.
Usage example:
>>> from gingerdj.db.models import F
>>> from gingerdj.db.models.functions import JSONObject, Lower
>>> Author.objects.create(name="Margaret Smith", alias="msmith", age=25)
>>> author = Author.objects.annotate(
... json_object=JSONObject(
... name=Lower("name"),
... alias="alias",
... age=F("age") * 2,
... )
... ).get()
>>> author.json_object
{'name': 'margaret smith', 'alias': 'msmith', 'age': 50}
Least
¶
- class Least(*expressions, **extra)¶
Accepts a list of at least two field names or expressions and returns the least value. Each argument must be of a similar type, so mixing text and numbers will result in a database error.
Warning
The behavior of Least
when one or more expression may be null
varies between databases:
PostgreSQL:
Least
will return the smallest non-null expression, ornull
if all expressions arenull
.SQLite, Oracle, and MySQL: If any expression is
null
,Least
will returnnull
.
The PostgreSQL behavior can be emulated using Coalesce
if you know
a sensible maximum value to provide as a default.
NullIf
¶
- class NullIf(expression1, expression2)¶
Accepts two expressions and returns None
if they are equal, otherwise
returns expression1
.
Caveats on Oracle
Due to an Oracle convention, this
function returns the empty string instead of None
when the expressions
are of type CharField
.
Passing Value(None)
to expression1
is prohibited on Oracle since
Oracle doesn’t accept NULL
as the first argument.
Date functions¶
We’ll be using the following model in examples of each function:
class Experiment(models.Model):
start_datetime = models.DateTimeField()
start_date = models.DateField(null=True, blank=True)
start_time = models.TimeField(null=True, blank=True)
end_datetime = models.DateTimeField(null=True, blank=True)
end_date = models.DateField(null=True, blank=True)
end_time = models.TimeField(null=True, blank=True)
Extract
¶
- class Extract(expression, lookup_name=None, tzinfo=None, **extra)¶
Extracts a component of a date as a number.
Takes an expression
representing a DateField
, DateTimeField
,
TimeField
, or DurationField
and a lookup_name
, and returns the part
of the date referenced by lookup_name
as an IntegerField
.
GingerDJ usually uses the databases’ extract function, so you may use any
lookup_name
that your database supports. A tzinfo
subclass, usually
provided by zoneinfo
, can be passed to extract a value in a specific
timezone.
Given the datetime 2015-06-15 23:30:01.000321+00:00
, the built-in
lookup_name
s return:
“year”: 2015
“iso_year”: 2015
“quarter”: 2
“month”: 6
“day”: 15
“week”: 25
“week_day”: 2
“iso_week_day”: 1
“hour”: 23
“minute”: 30
“second”: 1
If a different timezone like Australia/Melbourne
is active in GingerDJ, then
the datetime is converted to the timezone before the value is extracted. The
timezone offset for Melbourne in the example date above is +10:00. The values
returned when this timezone is active will be the same as above except for:
“day”: 16
“week_day”: 3
“iso_week_day”: 2
“hour”: 9
week_day
values
The week_day
lookup_type
is calculated differently from most
databases and from Python’s standard functions. This function will return
1
for Sunday, 2
for Monday, through 7
for Saturday.
The equivalent calculation in Python is:
>>> from datetime import datetime
>>> dt = datetime(2015, 6, 15)
>>> (dt.isoweekday() % 7) + 1
2
week
values
The week
lookup_type
is calculated based on ISO-8601, i.e.,
a week starts on a Monday. The first week of a year is the one that
contains the year’s first Thursday, i.e. the first week has the majority
(four or more) of its days in the year. The value returned is in the range
1 to 52 or 53.
Each lookup_name
above has a corresponding Extract
subclass (listed
below) that should typically be used instead of the more verbose equivalent,
e.g. use ExtractYear(...)
rather than Extract(..., lookup_name='year')
.
Usage example:
>>> from datetime import datetime
>>> from gingerdj.db.models.functions import Extract
>>> start = datetime(2015, 6, 15)
>>> end = datetime(2015, 7, 2)
>>> Experiment.objects.create(
... start_datetime=start, start_date=start.date(), end_datetime=end, end_date=end.date()
... )
>>> # Add the experiment start year as a field in the QuerySet.
>>> experiment = Experiment.objects.annotate(
... start_year=Extract("start_datetime", "year")
... ).get()
>>> experiment.start_year
2015
>>> # How many experiments completed in the same year in which they started?
>>> Experiment.objects.filter(start_datetime__year=Extract("end_datetime", "year")).count()
1
DateField
extracts¶
- class ExtractYear(expression, tzinfo=None, **extra)¶
- lookup_name = 'year'
- class ExtractIsoYear(expression, tzinfo=None, **extra)¶
Returns the ISO-8601 week-numbering year.
- lookup_name = 'iso_year'
- class ExtractMonth(expression, tzinfo=None, **extra)¶
- lookup_name = 'month'
- class ExtractDay(expression, tzinfo=None, **extra)¶
- lookup_name = 'day'
- class ExtractWeekDay(expression, tzinfo=None, **extra)¶
- lookup_name = 'week_day'
- class ExtractIsoWeekDay(expression, tzinfo=None, **extra)¶
Returns the ISO-8601 week day with day 1 being Monday and day 7 being Sunday.
- lookup_name = 'iso_week_day'
- class ExtractWeek(expression, tzinfo=None, **extra)¶
- lookup_name = 'week'
- class ExtractQuarter(expression, tzinfo=None, **extra)¶
- lookup_name = 'quarter'
These are logically equivalent to Extract('date_field', lookup_name)
. Each
class is also a Transform
registered on DateField
and DateTimeField
as __(lookup_name)
, e.g. __year
.
Since DateField
s don’t have a time component, only Extract
subclasses
that deal with date-parts can be used with DateField
:
>>> from datetime import datetime, timezone
>>> from gingerdj.db.models.functions import (
... ExtractDay,
... ExtractMonth,
... ExtractQuarter,
... ExtractWeek,
... ExtractIsoWeekDay,
... ExtractWeekDay,
... ExtractIsoYear,
... ExtractYear,
... )
>>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc)
>>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc)
>>> Experiment.objects.create(
... start_datetime=start_2015,
... start_date=start_2015.date(),
... end_datetime=end_2015,
... end_date=end_2015.date(),
... )
>>> Experiment.objects.annotate(
... year=ExtractYear("start_date"),
... isoyear=ExtractIsoYear("start_date"),
... quarter=ExtractQuarter("start_date"),
... month=ExtractMonth("start_date"),
... week=ExtractWeek("start_date"),
... day=ExtractDay("start_date"),
... weekday=ExtractWeekDay("start_date"),
... isoweekday=ExtractIsoWeekDay("start_date"),
... ).values(
... "year",
... "isoyear",
... "quarter",
... "month",
... "week",
... "day",
... "weekday",
... "isoweekday",
... ).get(
... end_date__year=ExtractYear("start_date")
... )
{'year': 2015, 'isoyear': 2015, 'quarter': 2, 'month': 6, 'week': 25,
'day': 15, 'weekday': 2, 'isoweekday': 1}
DateTimeField
extracts¶
In addition to the following, all extracts for DateField
listed above may
also be used on DateTimeField
s .
- class ExtractHour(expression, tzinfo=None, **extra)¶
- lookup_name = 'hour'
- class ExtractMinute(expression, tzinfo=None, **extra)¶
- lookup_name = 'minute'
- class ExtractSecond(expression, tzinfo=None, **extra)¶
- lookup_name = 'second'
These are logically equivalent to Extract('datetime_field', lookup_name)
.
Each class is also a Transform
registered on DateTimeField
as
__(lookup_name)
, e.g. __minute
.
DateTimeField
examples:
>>> from datetime import datetime, timezone
>>> from gingerdj.db.models.functions import (
... ExtractDay,
... ExtractHour,
... ExtractMinute,
... ExtractMonth,
... ExtractQuarter,
... ExtractSecond,
... ExtractWeek,
... ExtractIsoWeekDay,
... ExtractWeekDay,
... ExtractIsoYear,
... ExtractYear,
... )
>>> start_2015 = datetime(2015, 6, 15, 23, 30, 1, tzinfo=timezone.utc)
>>> end_2015 = datetime(2015, 6, 16, 13, 11, 27, tzinfo=timezone.utc)
>>> Experiment.objects.create(
... start_datetime=start_2015,
... start_date=start_2015.date(),
... end_datetime=end_2015,
... end_date=end_2015.date(),
... )
>>> Experiment.objects.annotate(
... year=ExtractYear("start_datetime"),
... isoyear=ExtractIsoYear("start_datetime"),
... quarter=ExtractQuarter("start_datetime"),
... month=ExtractMonth("start_datetime"),
... week=ExtractWeek("start_datetime"),
... day=ExtractDay("start_datetime"),
... weekday=ExtractWeekDay("start_datetime"),
... isoweekday=ExtractIsoWeekDay("start_datetime"),
... hour=ExtractHour("start_datetime"),
... minute=ExtractMinute("start_datetime"),
... second=ExtractSecond("start_datetime"),
... ).values(
... "year",
... "isoyear",
... "month",
... "week",
... "day",
... "weekday",
... "isoweekday",
... "hour",
... "minute",
... "second",
... ).get(
... end_datetime__year=ExtractYear("start_datetime")
... )
{'year': 2015, 'isoyear': 2015, 'quarter': 2, 'month': 6, 'week': 25,
'day': 15, 'weekday': 2, 'isoweekday': 1, 'hour': 23, 'minute': 30,
'second': 1}
When USE_TZ
is True
then datetimes are stored in the database
in UTC. If a different timezone is active in GingerDJ, the datetime is converted
to that timezone before the value is extracted. The example below converts to
the Melbourne timezone (UTC +10:00), which changes the day, weekday, and hour
values that are returned:
>>> from gingerdj.utils import timezone
>>> import zoneinfo
>>> melb = zoneinfo.ZoneInfo("Australia/Melbourne") # UTC+10:00
>>> with timezone.override(melb):
... Experiment.objects.annotate(
... day=ExtractDay("start_datetime"),
... weekday=ExtractWeekDay("start_datetime"),
... isoweekday=ExtractIsoWeekDay("start_datetime"),
... hour=ExtractHour("start_datetime"),
... ).values("day", "weekday", "isoweekday", "hour").get(
... end_datetime__year=ExtractYear("start_datetime"),
... )
...
{'day': 16, 'weekday': 3, 'isoweekday': 2, 'hour': 9}
Explicitly passing the timezone to the Extract
function behaves in the same
way, and takes priority over an active timezone:
>>> import zoneinfo
>>> melb = zoneinfo.ZoneInfo("Australia/Melbourne")
>>> Experiment.objects.annotate(
... day=ExtractDay("start_datetime", tzinfo=melb),
... weekday=ExtractWeekDay("start_datetime", tzinfo=melb),
... isoweekday=ExtractIsoWeekDay("start_datetime", tzinfo=melb),
... hour=ExtractHour("start_datetime", tzinfo=melb),
... ).values("day", "weekday", "isoweekday", "hour").get(
... end_datetime__year=ExtractYear("start_datetime"),
... )
{'day': 16, 'weekday': 3, 'isoweekday': 2, 'hour': 9}
Now
¶
- class Now¶
Returns the database server’s current date and time when the query is executed,
typically using the SQL CURRENT_TIMESTAMP
.
Usage example:
>>> from gingerdj.db.models.functions import Now
>>> Article.objects.filter(published__lte=Now())
<QuerySet [<Article: How to GingerDJ>]>
PostgreSQL considerations
On PostgreSQL, the SQL CURRENT_TIMESTAMP
returns the time that the
current transaction started. Therefore for cross-database compatibility,
Now()
uses STATEMENT_TIMESTAMP
instead. If you need the transaction
timestamp, use gingerdj.contrib.postgres.functions.TransactionNow
.
Oracle
On Oracle, the SQL LOCALTIMESTAMP
is used to avoid issues with casting
CURRENT_TIMESTAMP
to DateTimeField
.
In older versions, the SQL CURRENT_TIMESTAMP
was used on Oracle instead
of LOCALTIMESTAMP
.
Trunc
¶
- class Trunc(expression, kind, output_field=None, tzinfo=None, **extra)¶
Truncates a date up to a significant component.
When you only care if something happened in a particular year, hour, or day,
but not the exact second, then Trunc
(and its subclasses) can be useful to
filter or aggregate your data. For example, you can use Trunc
to calculate
the number of sales per day.
Trunc
takes a single expression
, representing a DateField
,
TimeField
, or DateTimeField
, a kind
representing a date or time
part, and an output_field
that’s either DateTimeField()
,
TimeField()
, or DateField()
. It returns a datetime, date, or time
depending on output_field
, with fields up to kind
set to their minimum
value. If output_field
is omitted, it will default to the output_field
of expression
. A tzinfo
subclass, usually provided by zoneinfo
,
can be passed to truncate a value in a specific timezone.
Given the datetime 2015-06-15 14:30:50.000321+00:00
, the built-in kind
s
return:
“year”: 2015-01-01 00:00:00+00:00
“quarter”: 2015-04-01 00:00:00+00:00
“month”: 2015-06-01 00:00:00+00:00
“week”: 2015-06-15 00:00:00+00:00
“day”: 2015-06-15 00:00:00+00:00
“hour”: 2015-06-15 14:00:00+00:00
“minute”: 2015-06-15 14:30:00+00:00
“second”: 2015-06-15 14:30:50+00:00
If a different timezone like Australia/Melbourne
is active in GingerDJ, then
the datetime is converted to the new timezone before the value is truncated.
The timezone offset for Melbourne in the example date above is +10:00. The
values returned when this timezone is active will be:
“year”: 2015-01-01 00:00:00+11:00
“quarter”: 2015-04-01 00:00:00+10:00
“month”: 2015-06-01 00:00:00+10:00
“week”: 2015-06-16 00:00:00+10:00
“day”: 2015-06-16 00:00:00+10:00
“hour”: 2015-06-16 00:00:00+10:00
“minute”: 2015-06-16 00:30:00+10:00
“second”: 2015-06-16 00:30:50+10:00
The year has an offset of +11:00 because the result transitioned into daylight saving time.
Each kind
above has a corresponding Trunc
subclass (listed below) that
should typically be used instead of the more verbose equivalent,
e.g. use TruncYear(...)
rather than Trunc(..., kind='year')
.
The subclasses are all defined as transforms, but they aren’t registered with
any fields, because the lookup names are already reserved by the Extract
subclasses.
Usage example:
>>> from datetime import datetime
>>> from gingerdj.db.models import Count, DateTimeField
>>> from gingerdj.db.models.functions import Trunc
>>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 30, 50, 321))
>>> Experiment.objects.create(start_datetime=datetime(2015, 6, 15, 14, 40, 2, 123))
>>> Experiment.objects.create(start_datetime=datetime(2015, 12, 25, 10, 5, 27, 999))
>>> experiments_per_day = (
... Experiment.objects.annotate(
... start_day=Trunc("start_datetime", "day", output_field=DateTimeField())
... )
... .values("start_day")
... .annotate(experiments=Count("id"))
... )
>>> for exp in experiments_per_day:
... print(exp["start_day"], exp["experiments"])
...
2015-06-15 00:00:00 2
2015-12-25 00:00:00 1
>>> experiments = Experiment.objects.annotate(
... start_day=Trunc("start_datetime", "day", output_field=DateTimeField())
... ).filter(start_day=datetime(2015, 6, 15))
>>> for exp in experiments:
... print(exp.start_datetime)
...
2015-06-15 14:30:50.000321
2015-06-15 14:40:02.000123
DateField
truncation¶
- class TruncYear(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'year'
- class TruncMonth(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'month'
- class TruncWeek(expression, output_field=None, tzinfo=None, **extra)¶
Truncates to midnight on the Monday of the week.
- kind = 'week'
- class TruncQuarter(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'quarter'
These are logically equivalent to Trunc('date_field', kind)
. They truncate
all parts of the date up to kind
which allows grouping or filtering dates
with less precision. expression
can have an output_field
of either
DateField
or DateTimeField
.
Since DateField
s don’t have a time component, only Trunc
subclasses
that deal with date-parts can be used with DateField
:
>>> from datetime import datetime, timezone
>>> from gingerdj.db.models import Count
>>> from gingerdj.db.models.functions import TruncMonth, TruncYear
>>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc)
>>> start2 = datetime(2015, 6, 15, 14, 40, 2, 123, tzinfo=timezone.utc)
>>> start3 = datetime(2015, 12, 31, 17, 5, 27, 999, tzinfo=timezone.utc)
>>> Experiment.objects.create(start_datetime=start1, start_date=start1.date())
>>> Experiment.objects.create(start_datetime=start2, start_date=start2.date())
>>> Experiment.objects.create(start_datetime=start3, start_date=start3.date())
>>> experiments_per_year = (
... Experiment.objects.annotate(year=TruncYear("start_date"))
... .values("year")
... .annotate(experiments=Count("id"))
... )
>>> for exp in experiments_per_year:
... print(exp["year"], exp["experiments"])
...
2014-01-01 1
2015-01-01 2
>>> import zoneinfo
>>> melb = zoneinfo.ZoneInfo("Australia/Melbourne")
>>> experiments_per_month = (
... Experiment.objects.annotate(month=TruncMonth("start_datetime", tzinfo=melb))
... .values("month")
... .annotate(experiments=Count("id"))
... )
>>> for exp in experiments_per_month:
... print(exp["month"], exp["experiments"])
...
2015-06-01 00:00:00+10:00 1
2016-01-01 00:00:00+11:00 1
2014-06-01 00:00:00+10:00 1
DateTimeField
truncation¶
- class TruncDate(expression, tzinfo=None, **extra)¶
- lookup_name = 'date'
- output_field = DateField()
TruncDate
casts expression
to a date rather than using the built-in SQL
truncate function. It’s also registered as a transform on DateTimeField
as
__date
.
- class TruncTime(expression, tzinfo=None, **extra)¶
- lookup_name = 'time'
- output_field = TimeField()
TruncTime
casts expression
to a time rather than using the built-in SQL
truncate function. It’s also registered as a transform on DateTimeField
as
__time
.
- class TruncDay(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'day'
- class TruncHour(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'hour'
- class TruncMinute(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'minute'
- class TruncSecond(expression, output_field=None, tzinfo=None, **extra)¶
- kind = 'second'
These are logically equivalent to Trunc('datetime_field', kind)
. They
truncate all parts of the date up to kind
and allow grouping or filtering
datetimes with less precision. expression
must have an output_field
of
DateTimeField
.
Usage example:
>>> from datetime import date, datetime, timezone
>>> from gingerdj.db.models import Count
>>> from gingerdj.db.models.functions import (
... TruncDate,
... TruncDay,
... TruncHour,
... TruncMinute,
... TruncSecond,
... )
>>> import zoneinfo
>>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc)
>>> Experiment.objects.create(start_datetime=start1, start_date=start1.date())
>>> melb = zoneinfo.ZoneInfo("Australia/Melbourne")
>>> Experiment.objects.annotate(
... date=TruncDate("start_datetime"),
... day=TruncDay("start_datetime", tzinfo=melb),
... hour=TruncHour("start_datetime", tzinfo=melb),
... minute=TruncMinute("start_datetime"),
... second=TruncSecond("start_datetime"),
... ).values("date", "day", "hour", "minute", "second").get()
{'date': datetime.date(2014, 6, 15),
'day': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=zoneinfo.ZoneInfo('Australia/Melbourne')),
'hour': datetime.datetime(2014, 6, 16, 0, 0, tzinfo=zoneinfo.ZoneInfo('Australia/Melbourne')),
'minute': 'minute': datetime.datetime(2014, 6, 15, 14, 30, tzinfo=timezone.utc),
'second': datetime.datetime(2014, 6, 15, 14, 30, 50, tzinfo=timezone.utc)
}
TimeField
truncation¶
- class TruncHour(expression, output_field=None, tzinfo=None, **extra)
- kind = 'hour'
- class TruncMinute(expression, output_field=None, tzinfo=None, **extra)
- kind = 'minute'
- class TruncSecond(expression, output_field=None, tzinfo=None, **extra)
- kind = 'second'
These are logically equivalent to Trunc('time_field', kind)
. They truncate
all parts of the time up to kind
which allows grouping or filtering times
with less precision. expression
can have an output_field
of either
TimeField
or DateTimeField
.
Since TimeField
s don’t have a date component, only Trunc
subclasses
that deal with time-parts can be used with TimeField
:
>>> from datetime import datetime, timezone
>>> from gingerdj.db.models import Count, TimeField
>>> from gingerdj.db.models.functions import TruncHour
>>> start1 = datetime(2014, 6, 15, 14, 30, 50, 321, tzinfo=timezone.utc)
>>> start2 = datetime(2014, 6, 15, 14, 40, 2, 123, tzinfo=timezone.utc)
>>> start3 = datetime(2015, 12, 31, 17, 5, 27, 999, tzinfo=timezone.utc)
>>> Experiment.objects.create(start_datetime=start1, start_time=start1.time())
>>> Experiment.objects.create(start_datetime=start2, start_time=start2.time())
>>> Experiment.objects.create(start_datetime=start3, start_time=start3.time())
>>> experiments_per_hour = (
... Experiment.objects.annotate(
... hour=TruncHour("start_datetime", output_field=TimeField()),
... )
... .values("hour")
... .annotate(experiments=Count("id"))
... )
>>> for exp in experiments_per_hour:
... print(exp["hour"], exp["experiments"])
...
14:00:00 2
17:00:00 1
>>> import zoneinfo
>>> melb = zoneinfo.ZoneInfo("Australia/Melbourne")
>>> experiments_per_hour = (
... Experiment.objects.annotate(
... hour=TruncHour("start_datetime", tzinfo=melb),
... )
... .values("hour")
... .annotate(experiments=Count("id"))
... )
>>> for exp in experiments_per_hour:
... print(exp["hour"], exp["experiments"])
...
2014-06-16 00:00:00+10:00 2
2016-01-01 04:00:00+11:00 1
Math Functions¶
We’ll be using the following model in math function examples:
class Vector(models.Model):
x = models.FloatField()
y = models.FloatField()
Abs
¶
- class Abs(expression, **extra)¶
Returns the absolute value of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Abs
>>> Vector.objects.create(x=-0.5, y=1.1)
>>> vector = Vector.objects.annotate(x_abs=Abs("x"), y_abs=Abs("y")).get()
>>> vector.x_abs, vector.y_abs
(0.5, 1.1)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Abs
>>> FloatField.register_lookup(Abs)
>>> # Get vectors inside the unit cube
>>> vectors = Vector.objects.filter(x__abs__lt=1, y__abs__lt=1)
ACos
¶
- class ACos(expression, **extra)¶
Returns the arccosine of a numeric field or expression. The expression value must be within the range -1 to 1.
Usage example:
>>> from gingerdj.db.models.functions import ACos
>>> Vector.objects.create(x=0.5, y=-0.9)
>>> vector = Vector.objects.annotate(x_acos=ACos("x"), y_acos=ACos("y")).get()
>>> vector.x_acos, vector.y_acos
(1.0471975511965979, 2.6905658417935308)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import ACos
>>> FloatField.register_lookup(ACos)
>>> # Get vectors whose arccosine is less than 1
>>> vectors = Vector.objects.filter(x__acos__lt=1, y__acos__lt=1)
ASin
¶
- class ASin(expression, **extra)¶
Returns the arcsine of a numeric field or expression. The expression value must be in the range -1 to 1.
Usage example:
>>> from gingerdj.db.models.functions import ASin
>>> Vector.objects.create(x=0, y=1)
>>> vector = Vector.objects.annotate(x_asin=ASin("x"), y_asin=ASin("y")).get()
>>> vector.x_asin, vector.y_asin
(0.0, 1.5707963267948966)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import ASin
>>> FloatField.register_lookup(ASin)
>>> # Get vectors whose arcsine is less than 1
>>> vectors = Vector.objects.filter(x__asin__lt=1, y__asin__lt=1)
ATan
¶
- class ATan(expression, **extra)¶
Returns the arctangent of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import ATan
>>> Vector.objects.create(x=3.12, y=6.987)
>>> vector = Vector.objects.annotate(x_atan=ATan("x"), y_atan=ATan("y")).get()
>>> vector.x_atan, vector.y_atan
(1.2606282660069106, 1.428638798133829)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import ATan
>>> FloatField.register_lookup(ATan)
>>> # Get vectors whose arctangent is less than 2
>>> vectors = Vector.objects.filter(x__atan__lt=2, y__atan__lt=2)
ATan2
¶
- class ATan2(expression1, expression2, **extra)¶
Returns the arctangent of expression1 / expression2
.
Usage example:
>>> from gingerdj.db.models.functions import ATan2
>>> Vector.objects.create(x=2.5, y=1.9)
>>> vector = Vector.objects.annotate(atan2=ATan2("x", "y")).get()
>>> vector.atan2
0.9209258773829491
Ceil
¶
- class Ceil(expression, **extra)¶
Returns the smallest integer greater than or equal to a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Ceil
>>> Vector.objects.create(x=3.12, y=7.0)
>>> vector = Vector.objects.annotate(x_ceil=Ceil("x"), y_ceil=Ceil("y")).get()
>>> vector.x_ceil, vector.y_ceil
(4.0, 7.0)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Ceil
>>> FloatField.register_lookup(Ceil)
>>> # Get vectors whose ceil is less than 10
>>> vectors = Vector.objects.filter(x__ceil__lt=10, y__ceil__lt=10)
Cos
¶
- class Cos(expression, **extra)¶
Returns the cosine of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Cos
>>> Vector.objects.create(x=-8.0, y=3.1415926)
>>> vector = Vector.objects.annotate(x_cos=Cos("x"), y_cos=Cos("y")).get()
>>> vector.x_cos, vector.y_cos
(-0.14550003380861354, -0.9999999999999986)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Cos
>>> FloatField.register_lookup(Cos)
>>> # Get vectors whose cosine is less than 0.5
>>> vectors = Vector.objects.filter(x__cos__lt=0.5, y__cos__lt=0.5)
Cot
¶
- class Cot(expression, **extra)¶
Returns the cotangent of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Cot
>>> Vector.objects.create(x=12.0, y=1.0)
>>> vector = Vector.objects.annotate(x_cot=Cot("x"), y_cot=Cot("y")).get()
>>> vector.x_cot, vector.y_cot
(-1.5726734063976826, 0.642092615934331)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Cot
>>> FloatField.register_lookup(Cot)
>>> # Get vectors whose cotangent is less than 1
>>> vectors = Vector.objects.filter(x__cot__lt=1, y__cot__lt=1)
Degrees
¶
- class Degrees(expression, **extra)¶
Converts a numeric field or expression from radians to degrees.
Usage example:
>>> from gingerdj.db.models.functions import Degrees
>>> Vector.objects.create(x=-1.57, y=3.14)
>>> vector = Vector.objects.annotate(x_d=Degrees("x"), y_d=Degrees("y")).get()
>>> vector.x_d, vector.y_d
(-89.95437383553924, 179.9087476710785)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Degrees
>>> FloatField.register_lookup(Degrees)
>>> # Get vectors whose degrees are less than 360
>>> vectors = Vector.objects.filter(x__degrees__lt=360, y__degrees__lt=360)
Exp
¶
- class Exp(expression, **extra)¶
Returns the value of e
(the natural logarithm base) raised to the power of
a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Exp
>>> Vector.objects.create(x=5.4, y=-2.0)
>>> vector = Vector.objects.annotate(x_exp=Exp("x"), y_exp=Exp("y")).get()
>>> vector.x_exp, vector.y_exp
(221.40641620418717, 0.1353352832366127)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Exp
>>> FloatField.register_lookup(Exp)
>>> # Get vectors whose exp() is greater than 10
>>> vectors = Vector.objects.filter(x__exp__gt=10, y__exp__gt=10)
Floor
¶
- class Floor(expression, **extra)¶
Returns the largest integer value not greater than a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Floor
>>> Vector.objects.create(x=5.4, y=-2.3)
>>> vector = Vector.objects.annotate(x_floor=Floor("x"), y_floor=Floor("y")).get()
>>> vector.x_floor, vector.y_floor
(5.0, -3.0)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Floor
>>> FloatField.register_lookup(Floor)
>>> # Get vectors whose floor() is greater than 10
>>> vectors = Vector.objects.filter(x__floor__gt=10, y__floor__gt=10)
Ln
¶
- class Ln(expression, **extra)¶
Returns the natural logarithm a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Ln
>>> Vector.objects.create(x=5.4, y=233.0)
>>> vector = Vector.objects.annotate(x_ln=Ln("x"), y_ln=Ln("y")).get()
>>> vector.x_ln, vector.y_ln
(1.6863989535702288, 5.4510384535657)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Ln
>>> FloatField.register_lookup(Ln)
>>> # Get vectors whose value greater than e
>>> vectors = Vector.objects.filter(x__ln__gt=1, y__ln__gt=1)
Log
¶
- class Log(expression1, expression2, **extra)¶
Accepts two numeric fields or expressions and returns the logarithm of the second to base of the first.
Usage example:
>>> from gingerdj.db.models.functions import Log
>>> Vector.objects.create(x=2.0, y=4.0)
>>> vector = Vector.objects.annotate(log=Log("x", "y")).get()
>>> vector.log
2.0
Mod
¶
- class Mod(expression1, expression2, **extra)¶
Accepts two numeric fields or expressions and returns the remainder of the first divided by the second (modulo operation).
Usage example:
>>> from gingerdj.db.models.functions import Mod
>>> Vector.objects.create(x=5.4, y=2.3)
>>> vector = Vector.objects.annotate(mod=Mod("x", "y")).get()
>>> vector.mod
0.8
Pi
¶
- class Pi(**extra)¶
Returns the value of the mathematical constant π
.
Power
¶
- class Power(expression1, expression2, **extra)¶
Accepts two numeric fields or expressions and returns the value of the first raised to the power of the second.
Usage example:
>>> from gingerdj.db.models.functions import Power
>>> Vector.objects.create(x=2, y=-2)
>>> vector = Vector.objects.annotate(power=Power("x", "y")).get()
>>> vector.power
0.25
Radians
¶
- class Radians(expression, **extra)¶
Converts a numeric field or expression from degrees to radians.
Usage example:
>>> from gingerdj.db.models.functions import Radians
>>> Vector.objects.create(x=-90, y=180)
>>> vector = Vector.objects.annotate(x_r=Radians("x"), y_r=Radians("y")).get()
>>> vector.x_r, vector.y_r
(-1.5707963267948966, 3.141592653589793)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Radians
>>> FloatField.register_lookup(Radians)
>>> # Get vectors whose radians are less than 1
>>> vectors = Vector.objects.filter(x__radians__lt=1, y__radians__lt=1)
Random
¶
- class Random(**extra)¶
Returns a random value in the range 0.0 ≤ x < 1.0
.
Round
¶
- class Round(expression, precision=0, **extra)¶
Rounds a numeric field or expression to precision
(must be an integer)
decimal places. By default, it rounds to the nearest integer. Whether half
values are rounded up or down depends on the database.
Usage example:
>>> from gingerdj.db.models.functions import Round
>>> Vector.objects.create(x=5.4, y=-2.37)
>>> vector = Vector.objects.annotate(x_r=Round("x"), y_r=Round("y", precision=1)).get()
>>> vector.x_r, vector.y_r
(5.0, -2.4)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Round
>>> FloatField.register_lookup(Round)
>>> # Get vectors whose round() is less than 20
>>> vectors = Vector.objects.filter(x__round__lt=20, y__round__lt=20)
Sign
¶
- class Sign(expression, **extra)¶
Returns the sign (-1, 0, 1) of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Sign
>>> Vector.objects.create(x=5.4, y=-2.3)
>>> vector = Vector.objects.annotate(x_sign=Sign("x"), y_sign=Sign("y")).get()
>>> vector.x_sign, vector.y_sign
(1, -1)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Sign
>>> FloatField.register_lookup(Sign)
>>> # Get vectors whose signs of components are less than 0.
>>> vectors = Vector.objects.filter(x__sign__lt=0, y__sign__lt=0)
Sin
¶
- class Sin(expression, **extra)¶
Returns the sine of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Sin
>>> Vector.objects.create(x=5.4, y=-2.3)
>>> vector = Vector.objects.annotate(x_sin=Sin("x"), y_sin=Sin("y")).get()
>>> vector.x_sin, vector.y_sin
(-0.7727644875559871, -0.7457052121767203)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Sin
>>> FloatField.register_lookup(Sin)
>>> # Get vectors whose sin() is less than 0
>>> vectors = Vector.objects.filter(x__sin__lt=0, y__sin__lt=0)
Sqrt
¶
- class Sqrt(expression, **extra)¶
Returns the square root of a nonnegative numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Sqrt
>>> Vector.objects.create(x=4.0, y=12.0)
>>> vector = Vector.objects.annotate(x_sqrt=Sqrt("x"), y_sqrt=Sqrt("y")).get()
>>> vector.x_sqrt, vector.y_sqrt
(2.0, 3.46410)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Sqrt
>>> FloatField.register_lookup(Sqrt)
>>> # Get vectors whose sqrt() is less than 5
>>> vectors = Vector.objects.filter(x__sqrt__lt=5, y__sqrt__lt=5)
Tan
¶
- class Tan(expression, **extra)¶
Returns the tangent of a numeric field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Tan
>>> Vector.objects.create(x=0, y=12)
>>> vector = Vector.objects.annotate(x_tan=Tan("x"), y_tan=Tan("y")).get()
>>> vector.x_tan, vector.y_tan
(0.0, -0.6358599286615808)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import FloatField
>>> from gingerdj.db.models.functions import Tan
>>> FloatField.register_lookup(Tan)
>>> # Get vectors whose tangent is less than 0
>>> vectors = Vector.objects.filter(x__tan__lt=0, y__tan__lt=0)
Text functions¶
Chr
¶
- class Chr(expression, **extra)¶
Accepts a numeric field or expression and returns the text representation of
the expression as a single character. It works the same as Python’s chr()
function.
Like Length
, it can be registered as a transform on IntegerField
.
The default lookup name is chr
.
Usage example:
>>> from gingerdj.db.models.functions import Chr
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.filter(name__startswith=Chr(ord("M"))).get()
>>> print(author.name)
Margaret Smith
Concat
¶
- class Concat(*expressions, **extra)¶
Accepts a list of at least two text fields or expressions and returns the
concatenated text. Each argument must be of a text or char type. If you want
to concatenate a TextField()
with a CharField()
, then be sure to tell
GingerDJ that the output_field
should be a TextField()
. Specifying an
output_field
is also required when concatenating a Value
as in the
example below.
This function will never have a null result. On backends where a null argument results in the entire expression being null, GingerDJ will ensure that each null part is converted to an empty string first.
Usage example:
>>> # Get the display name as "name (goes_by)"
>>> from gingerdj.db.models import CharField, Value as V
>>> from gingerdj.db.models.functions import Concat
>>> Author.objects.create(name="Margaret Smith", goes_by="Maggie")
>>> author = Author.objects.annotate(
... screen_name=Concat("name", V(" ("), "goes_by", V(")"), output_field=CharField())
... ).get()
>>> print(author.screen_name)
Margaret Smith (Maggie)
Left
¶
- class Left(expression, length, **extra)¶
Returns the first length
characters of the given text field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Left
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(first_initial=Left("name", 1)).get()
>>> print(author.first_initial)
M
Length
¶
- class Length(expression, **extra)¶
Accepts a single text field or expression and returns the number of characters the value has. If the expression is null, then the length will also be null.
Usage example:
>>> # Get the length of the name and goes_by fields
>>> from gingerdj.db.models.functions import Length
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(
... name_length=Length("name"), goes_by_length=Length("goes_by")
... ).get()
>>> print(author.name_length, author.goes_by_length)
(14, None)
It can also be registered as a transform. For example:
>>> from gingerdj.db.models import CharField
>>> from gingerdj.db.models.functions import Length
>>> CharField.register_lookup(Length)
>>> # Get authors whose name is longer than 7 characters
>>> authors = Author.objects.filter(name__length__gt=7)
Lower
¶
- class Lower(expression, **extra)¶
Accepts a single text field or expression and returns the lowercase representation.
It can also be registered as a transform as described in Length
.
Usage example:
>>> from gingerdj.db.models.functions import Lower
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(name_lower=Lower("name")).get()
>>> print(author.name_lower)
margaret smith
LPad
¶
- class LPad(expression, length, fill_text=Value(' '), **extra)¶
Returns the value of the given text field or expression padded on the left side
with fill_text
so that the resulting value is length
characters long.
The default fill_text
is a space.
Usage example:
>>> from gingerdj.db.models import Value
>>> from gingerdj.db.models.functions import LPad
>>> Author.objects.create(name="John", alias="j")
>>> Author.objects.update(name=LPad("name", 8, Value("abc")))
1
>>> print(Author.objects.get(alias="j").name)
abcaJohn
LTrim
¶
- class LTrim(expression, **extra)¶
Similar to Trim
, but removes only leading
spaces.
MD5
¶
- class MD5(expression, **extra)¶
Accepts a single text field or expression and returns the MD5 hash of the string.
It can also be registered as a transform as described in Length
.
Usage example:
>>> from gingerdj.db.models.functions import MD5
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(name_md5=MD5("name")).get()
>>> print(author.name_md5)
749fb689816b2db85f5b169c2055b247
Ord
¶
- class Ord(expression, **extra)¶
Accepts a single text field or expression and returns the Unicode code point
value for the first character of that expression. It works similar to Python’s
ord()
function, but an exception isn’t raised if the expression is more
than one character long.
It can also be registered as a transform as described in Length
.
The default lookup name is ord
.
Usage example:
>>> from gingerdj.db.models.functions import Ord
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(name_code_point=Ord("name")).get()
>>> print(author.name_code_point)
77
Repeat
¶
- class Repeat(expression, number, **extra)¶
Returns the value of the given text field or expression repeated number
times.
Usage example:
>>> from gingerdj.db.models.functions import Repeat
>>> Author.objects.create(name="John", alias="j")
>>> Author.objects.update(name=Repeat("name", 3))
1
>>> print(Author.objects.get(alias="j").name)
JohnJohnJohn
Replace
¶
- class Replace(expression, text, replacement=Value(''), **extra)¶
Replaces all occurrences of text
with replacement
in expression
.
The default replacement text is the empty string. The arguments to the function
are case-sensitive.
Usage example:
>>> from gingerdj.db.models import Value
>>> from gingerdj.db.models.functions import Replace
>>> Author.objects.create(name="Margaret Johnson")
>>> Author.objects.create(name="Margaret Smith")
>>> Author.objects.update(name=Replace("name", Value("Margaret"), Value("Margareth")))
2
>>> Author.objects.values("name")
<QuerySet [{'name': 'Margareth Johnson'}, {'name': 'Margareth Smith'}]>
Reverse
¶
- class Reverse(expression, **extra)¶
Accepts a single text field or expression and returns the characters of that expression in reverse order.
It can also be registered as a transform as described in Length
. The
default lookup name is reverse
.
Usage example:
>>> from gingerdj.db.models.functions import Reverse
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(backward=Reverse("name")).get()
>>> print(author.backward)
htimS teragraM
Right
¶
- class Right(expression, length, **extra)¶
Returns the last length
characters of the given text field or expression.
Usage example:
>>> from gingerdj.db.models.functions import Right
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(last_letter=Right("name", 1)).get()
>>> print(author.last_letter)
h
RPad
¶
- class RPad(expression, length, fill_text=Value(' '), **extra)¶
Similar to LPad
, but pads on the right
side.
RTrim
¶
- class RTrim(expression, **extra)¶
Similar to Trim
, but removes only trailing
spaces.
SHA1
, SHA224
, SHA256
, SHA384
, and SHA512
¶
- class SHA1(expression, **extra)¶
- class SHA224(expression, **extra)¶
- class SHA256(expression, **extra)¶
- class SHA384(expression, **extra)¶
- class SHA512(expression, **extra)¶
Accepts a single text field or expression and returns the particular hash of the string.
They can also be registered as transforms as described in Length
.
Usage example:
>>> from gingerdj.db.models.functions import SHA1
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(name_sha1=SHA1("name")).get()
>>> print(author.name_sha1)
b87efd8a6c991c390be5a68e8a7945a7851c7e5c
PostgreSQL
The pgcrypto extension must be installed. You can use the
CryptoExtension
migration
operation to install it.
Oracle
Oracle doesn’t support the SHA224
function.
StrIndex
¶
- class StrIndex(string, substring, **extra)¶
Returns a positive integer corresponding to the 1-indexed position of the first
occurrence of substring
inside string
, or 0 if substring
is not
found.
Usage example:
>>> from gingerdj.db.models import Value as V
>>> from gingerdj.db.models.functions import StrIndex
>>> Author.objects.create(name="Margaret Smith")
>>> Author.objects.create(name="Smith, Margaret")
>>> Author.objects.create(name="Margaret Jackson")
>>> Author.objects.filter(name="Margaret Jackson").annotate(
... smith_index=StrIndex("name", V("Smith"))
... ).get().smith_index
0
>>> authors = Author.objects.annotate(smith_index=StrIndex("name", V("Smith"))).filter(
... smith_index__gt=0
... )
<QuerySet [<Author: Margaret Smith>, <Author: Smith, Margaret>]>
Warning
In MySQL, a database table’s collation determines
whether string comparisons (such as the expression
and substring
of
this function) are case-sensitive. Comparisons are case-insensitive by
default.
Substr
¶
- class Substr(expression, pos, length=None, **extra)¶
Returns a substring of length length
from the field or expression starting
at position pos
. The position is 1-indexed, so the position must be greater
than 0. If length
is None
, then the rest of the string will be returned.
Usage example:
>>> # Set the alias to the first 5 characters of the name as lowercase
>>> from gingerdj.db.models.functions import Lower, Substr
>>> Author.objects.create(name="Margaret Smith")
>>> Author.objects.update(alias=Lower(Substr("name", 1, 5)))
1
>>> print(Author.objects.get(name="Margaret Smith").alias)
marga
Trim
¶
- class Trim(expression, **extra)¶
Returns the value of the given text field or expression with leading and trailing spaces removed.
Usage example:
>>> from gingerdj.db.models.functions import Trim
>>> Author.objects.create(name=" John ", alias="j")
>>> Author.objects.update(name=Trim("name"))
1
>>> print(Author.objects.get(alias="j").name)
John
Upper
¶
- class Upper(expression, **extra)¶
Accepts a single text field or expression and returns the uppercase representation.
It can also be registered as a transform as described in Length
.
Usage example:
>>> from gingerdj.db.models.functions import Upper
>>> Author.objects.create(name="Margaret Smith")
>>> author = Author.objects.annotate(name_upper=Upper("name")).get()
>>> print(author.name_upper)
MARGARET SMITH
Window functions¶
There are a number of functions to use in a
Window
expression for computing the rank
of elements or the Ntile
of some rows.
CumeDist
¶
- class CumeDist(*expressions, **extra)¶
Calculates the cumulative distribution of a value within a window or partition. The cumulative distribution is defined as the number of rows preceding or peered with the current row divided by the total number of rows in the frame.
DenseRank
¶
- class DenseRank(*expressions, **extra)¶
Equivalent to Rank
but does not have gaps.
FirstValue
¶
- class FirstValue(expression, **extra)¶
Returns the value evaluated at the row that’s the first row of the window
frame, or None
if no such value exists.
Lag
¶
- class Lag(expression, offset=1, default=None, **extra)¶
Calculates the value offset by offset
, and if no row exists there, returns
default
.
default
must have the same type as the expression
, however, this is
only validated by the database and not in Python.
MariaDB and default
MariaDB doesn’t support
the default
parameter.
LastValue
¶
- class LastValue(expression, **extra)¶
Comparable to FirstValue
, it calculates the last value in a given
frame clause.
Lead
¶
- class Lead(expression, offset=1, default=None, **extra)¶
Calculates the leading value in a given frame. Both
offset
and default
are evaluated with respect to the current row.
default
must have the same type as the expression
, however, this is
only validated by the database and not in Python.
MariaDB and default
MariaDB doesn’t support
the default
parameter.
NthValue
¶
- class NthValue(expression, nth=1, **extra)¶
Computes the row relative to the offset nth
(must be a positive value)
within the window. Returns None
if no row exists.
Some databases may handle a nonexistent nth-value differently. For example,
Oracle returns an empty string rather than None
for character-based
expressions. GingerDJ doesn’t do any conversions in these cases.
Ntile
¶
- class Ntile(num_buckets=1, **extra)¶
Calculates a partition for each of the rows in the frame clause, distributing
numbers as evenly as possible between 1 and num_buckets
. If the rows don’t
divide evenly into a number of buckets, one or more buckets will be represented
more frequently.
PercentRank
¶
- class PercentRank(*expressions, **extra)¶
Computes the relative rank of the rows in the frame clause. This computation is equivalent to evaluating:
(rank - 1) / (total rows - 1)
The following table explains the calculation for the relative rank of a row:
Row # |
Value |
Rank |
Calculation |
Relative Rank |
---|---|---|---|---|
1 |
15 |
1 |
(1-1)/(7-1) |
0.0000 |
2 |
20 |
2 |
(2-1)/(7-1) |
0.1666 |
3 |
20 |
2 |
(2-1)/(7-1) |
0.1666 |
4 |
20 |
2 |
(2-1)/(7-1) |
0.1666 |
5 |
30 |
5 |
(5-1)/(7-1) |
0.6666 |
6 |
30 |
5 |
(5-1)/(7-1) |
0.6666 |
7 |
40 |
7 |
(7-1)/(7-1) |
1.0000 |
Rank
¶
- class Rank(*expressions, **extra)¶
Comparable to RowNumber
, this function ranks rows in the window. The
computed rank contains gaps. Use DenseRank
to compute rank without
gaps.
RowNumber
¶
- class RowNumber(*expressions, **extra)¶
Computes the row number according to the ordering of either the frame clause or the ordering of the whole query if there is no partitioning of the window frame.